Nutritional Requirements

• As with all heterotrophs, we have to ingest foods to provide several different categories of nutrients:
 – Energy
 – Protein, Lipids, and Carbohydrates
 – Vitamins
 – Minerals
 – Trace Elements

Nutritional Requirements

• However, unlike other heterotrophs, Homo sapiens does not feed, he dines
 – We imbue our eating with social and symbolic significance
 – Meals are family and social affairs
 • Solidify alliances, incur indebtedness
 – Many foods have special meaning
 • Totems, taboos, preferences, health

Energy

• We require energy from our foods to support the maintenance of our body and our activities
 – Basal Metabolic Rate (BMR) is the energy expended by an individual who is reclining in a thermoneutral state, at least 12 hours post-prandial
 – Activity energy requirements are defined by the physical activity performed by the individual

Energy, 2

• BMR requirements are affected by many variables
 – Body size and composition
 – Sex
 – Age
 – Climate
 – Pregnancy and Lactation
 – Growth

Energy, 3

• Activity requirements are also influenced by personal variation
 – Body size and composition
 – Climate
 – Intensity and duration of activity
Energy, 4

<table>
<thead>
<tr>
<th>Cost above BMR (kcal/kg/hr)</th>
<th>Example of Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>Lying still, thermoneutral</td>
</tr>
<tr>
<td>0.25</td>
<td>Sitting quietly</td>
</tr>
<tr>
<td>0.50</td>
<td>Standing at ease</td>
</tr>
<tr>
<td>1.00</td>
<td>Sitting and sewing or weaving</td>
</tr>
<tr>
<td>1.50</td>
<td>Upright, light work like sweeping</td>
</tr>
<tr>
<td>2.50</td>
<td>Walking 4.8 km/hr, no load</td>
</tr>
<tr>
<td>3.50</td>
<td>Walking 4.8 km/hr, 15 kg load</td>
</tr>
<tr>
<td>4.50</td>
<td>Hoeing, ploughing</td>
</tr>
<tr>
<td>7.00</td>
<td>Tree felling, chopping</td>
</tr>
<tr>
<td>10.00</td>
<td>Near maximum exertion</td>
</tr>
</tbody>
</table>

Energy, 5

- Dietary sources of energy (calories)
 - Carbohydrates about 4 kcal/gm
 - Ethanol about 7 kcal/gm
 - Protein about 4 kcal/gm
 - Fats about 9 kcal/gm

Protein

- Required amino acids
 - Nine that we don’t synthesize
 - Three more that premature neonates require
 - Timing of ingestion is critical for protein synthesis
- Non-specific nitrogen
- Gluconeogenesis

Protein, 2

- Requirements difficult to determine in adults because of turnover in body
 - Lower the intake, the more efficient the body becomes at supplying need
- Critical needs:
 - Normal growth
 - Pregnancy, lactation
 - Healing from trauma, illness

PEM Malnutrition

- This is a continuum from extreme protein undernutrition to extreme calorie malnutrition and combinations of the two
- Kwashiorkor: primarily protein malnutrition
 - Caloric intake may be adequate
- Maramus: primarily caloric insufficiency
 - Protein intake may be adequate for size

Kwashiorkor. This child exhibits thin limbs and a swollen belly, classic symptoms of kwashiorkor, severe protein deficiency. This child, although looking like an infant is probably 3-4 years old. Kwashiorkor is an African word meaning "red boy" referring to the thin, light-colored, reddish hair. Although superficially looking fat, this is a form of malnutrition. At this stage, over all health and mental development can be impaired.
Carbohydrates

- Glucose is most important form for storage, transportation, utilization in the body
 - Efficient formation of ATP for cellular work
 - Active transport into peripheral cells requires insulin
 - Defects in this transport can produce diabetes
- No specific minimum intake, but we have evolved from fruit eaters and our bodies expect substantial intake of carbohydrates

Lipids

- Important source of energy
- Should comprise less than 30% of total caloric intake
 - Saturated versus unsaturated; trans fat
- Essential fatty acids: \(\omega-3 \) and \(\omega-6 \)
 - \(\omega-3 \) fatty acids show a CVD protective effect
 - Available from fatty fish; eicosapentaenoic acid and docosahexaenoic acid; tols and other plant foods contain alpha-linolenic acid which can convert into an \(\omega-3 \) in the body
 - Decrease risk of arrhythmias, which can lead to sudden cardiac death
 - Decrease triglyceride levels
 - Decrease growth rate of atherosclerotic plaque
 - Lower blood pressure (slightly)
 - \(\omega-6 \) (linoleic acid): necessary for fatty acid metabolism

Micronutrients

- Vitamins function as enzymes and coenzymes in various metabolic processes, and support diverse other bodily activities
- Minerals: Serve as structural elements and co-factors of bone, tooth, muscle, connective tissue, receptor site, binding sites

Vitamins

- Vitamins are nutritional requirements either because we lack the ability to synthesize them, or we fail to synthesize them in sufficient quantity for normal metabolism
- Vitamins fall into two broad categories depending on intrinsic chemical properties
 - Water soluble: B complex, C
 - Fat soluble: A, D, E, K
Vitamins

- Water soluble vitamins are present in all body fluids, and are subject to normal excretion
 - Storage is minimal, and daily or near daily intake is necessary to prevent deficiency conditions
- Fat soluble vitamins form lipoprotein complexes and can be stored by the body
 - Excesses are only slowly metabolized out and excreted

B-1 or Thiamin

- Sources: Pork, organs, whole grains, legumes
- Functions: Oxidative decarboxylation of ketones for TCA cycle. Coenzyme in reactions removing CO₂ in Pentose Phosphate shunt
- Deficiency: Beriberi with symptoms of peripheral nerve changes, edema, heart failure
- Excess: Not Reported
- Polished Rice Disease: Shipboard beriberi known from Japanese navy--addition of meat to normal rice ration reduced occurrence

Individual with Beriberi

B-2 or Riboflavin

- Sources: Dairy, meat, fish, cereals
- Functions: Coenzyme in energy metabolism (electron transport system), aiding in synthesis of ATP
- Deficiency: Reddened lips, cracks at mouth corner (cheilosis) eye lesions
- Excess: Not reported
- Requirement increases with increasing caloric intake.

Niacin

- Sources: Liver, grains, legumes
- Functions: Hydrogen acceptor as Nicotinamide Adenine Phosphate (NAP and NADP)
- Deficiency: Pellagra (skin, g.i. lesions, nervous, mental disorder)
- Excess: Flushing, burning, tingling around neck, face, hands
- Synthesized from tryptophan
 - Lime processing in maize is necessary to breakdown glutelin, make tryptophan available

Patient with Pellagra

- Patient also had diarrhea and mental changes

Patient with Pellagra

- Patient also had diarrhea and mental changes
B-6 or Pyridoxine
- Sources: Meats, vegetables, whole grains
- Functions: Coenzyme in amino acid metabolism
- Deficiency: Convulsions, skin rash, anemia
- Excess: Not reported
- Requirement increases with increasing protein intake

Pantothenic Acid
- Sources: Liver, yeast, whole grains
- Functions: Part of CoAcetoacetyl-TCA cycle (energy metabolism)
- Deficiency: Fatigue, sleep disturbances, rare in man
- Excess: Not reported

Folic Acid
- Sources: Legumes, green veggies, whole wheat
- Functions: DNA synthesis
- Deficiency: Glossitis, megalocytic anemia, diarrhea; Rats show spontaneous abortion
- Excess: Not reported
- May be involved in distribution of skin color
 - Denatured by UV light

B-12
- Sources: Muscle, eggs, Not in vegies
- Functions: DNA synthesis
- Deficiency: Pernicious anemia, neurological disorders
- Excess: Not reported
- Pernicious anemia shows Megaloblastic cells, pallor, defective RBC production, deterioration of spinal cord tissue, tingling of extremities

Biotin
- Sources: Legumes
- Functions: Fat synthesis, amino acid metabolism, glycogenesis
- Deficiency: Fatigue, depression, nausea, dermatitis, muscle pain
- Excess: Not reported

Choline
- Sources: Phospholipids, egg yolk, liver, grains, legumes
- Functions: Acetylcholine precursor
- Deficiency: Not reported
- Excess: Not reported
C or Ascorbic Acid
- Sources: Citrus, tomatoes, green peppers, salad greens
- Functions: Connective tissue synthesis
- Deficiency: Scurvy: skin, teeth, blood vessel degeneration
- Excess: Diarrhea, kidney stones
- 1780: Limeys discovered importance of citrus fruits to prevent scurvy on long sea voyages
 - Scurvy was the cause of more deaths than anything else during voyages of exploration

Scurvy
- Scrobutic rosary, bleeding gums
- Typical rash

A or Retinol
- Sources: Green or yellow vegies, dairy foods, liver and liver oils, especially concentrated in predator’s livers
- Function: Part of visual pigment rhodopsin, epithelial cell differentiation, cell membranes, mucopolysaccharides
- Deficiency: Xerophthalmia including night blindness to corneal ulcerations
- Excess: Headache, vomit, anorexia, long bone swelling, lysosome membrane breaks down, cells self-digest

Areas of Blindness Caused by Vitamin A Deficiency
- Countries or regions where xerophthalmia is a significant public health problem according to World Health Organization criteria

A or Retinol, 2
- Acute toxicity has occurred in Arctic explorers who consumed large quantities of polar bear liver
- ½ pound of polar bear liver contains about 9,000,000 I.U., a very lethal dose
- A taboo on polar bear liver consumption among Eskimos may be because of toxicity
 - Or may be due to fact that polar bears are mean mothers

D or Cholecalciferol
- Sources: Eggs, dairy products, cod liver oil, fortified milk
- Functions: Calcium absorption, promotes bone growth
- Deficiency: Rickets, Osteomalacia
- Excess: Vomit, diarrhea, kidney damage, soft tissue calcification
- Synthesized in dermis with UV exposure
 - May play a role in the distribution of skin color
<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Description</th>
</tr>
</thead>
</table>
| **E or Tocopherol** | - Sources: Seeds, leafy greens, vegetables
- Functions: Antioxidant, maintains cell wall integrity
- Deficiency: Hemolysis, anemia
- Excess: Gastrointestinal disturbances
- Increased polyunsaturated fatty acid intake requires increased E
- Has been claimed as wonder drug: prevent heart attack, increase sexual potency
 - Research findings support an antioxidant role |
| **K or Menaquinone** | - Sources: Green leafies
- Functions: O₂ and CO₂ combine with K to liberate energy used to activate the blood clotting cascade
- Deficiency: Only seen when induced by antibiotics or gall bladder disease, produces internal hemorrhage
- Excess: Not very toxic, although the possibility exists of internal clots
- Is synthesized by bacteria in intestine, in addition to dietary sources |
| **Calcium** | - Sources: Dairy goods, lime salts
- Functions: Bone, tooth formation and growth; nerve transmission
- Deficiency: Stunted growth, rickets, osteoporosis, convulsions
- Excess: Not well absorbed without additional Vitamin D
- Andeans chew coca with burnt lime and fat |
| **Calcium, 2** | - Controversy about calcium deficiency causing osteoporosis versus inactivity effects on bone density
 - Calcium absorption decreases with age
 - An increase in protein intake leads to an increase in Ca requirement, while an increase in phosphorus intake leads to a decrease in Ca needs
 - Both effects mediated by kidney tubular reabsorption |
| **Iron** | - Sources: Eggs, meat, whole grains, leafy greens
 - Stored in the spleen, liver and bone marrow
- Functions: Hemoglobin constituent, also functions in energy metabolism
- Deficiency: Iron-deficiency anemia
- Excess: Hemosiderosis, cirrhosis-like illness
- Heme iron (from animal sources) is highly absorbable
 - Non-heme iron absorption is increased by presence of animal tissue, Vitamin C, low iron stores
 - Absorption decreased by phytates, bran, tea, CaPO₄ |
| **Iron, 2** | - Popeye myth based on a typo in early food tables suggesting spinach had 10 times as much iron as it does
- Known toxicity from taking supplements and among Africans cooking in iron pans and storing beer in iron containers
- Post-menarcheal, pre-menopausal females have increased iron requirements |
Iodine
- Sources: Marine foods, dairy products, vegetables where soils contain iodine
- Function: Constituent of Thyroxin
- Deficiency: Goiter, cretinism in children born to goiterous mothers
- Excess: Depress thyroid activity, goiter
- Cretinism among the Maring due to non-iodized trade salt
 - Deficiency can be induced by goitrin present in Cruciferae (e.g., cabbage, rutabagas)
 - Thiocyanate contained in cassava also suppresses absorption

Zinc
- Sources: Widely distributed, most absorbable from animal foods
- Functions: Constituent of DNA polymerase necessary for cell division
- Deficiency: Hypogonadic dwarfism, stunting
- Excess: Fever, nausea, diarrhea
- Deficiency can be induced by calcium or cadmium which may be obtained through geophagia and which selectively suppress zinc absorption
 - Also, phytates present in whole-grain bread (e.g., in Shiraz, Iran) can complex the zinc, making it unabsorbable

Assessment based on questions being asked
- Dietitian, M.D., Epidemiologist
 - Diagnosis of individual or population for treatment
 - Problems of sensitivity and specificity with most assessment techniques:
 - Measures are likely to catch a high percentage of malnourished (e.g., good sensitivity)
 - Short, sick, dead people likely to have been malnourished
 - Measures are likely to catch many people not suffering from malnutrition (e.g., poor specificity)
 - Short may be genetic, sickness may be infectious not nutrition, death can be from other causes, i.e., non-malnourished may be diagnosed as malnourished

Dietary Intake
- Retrospective
 - Recent: (intake over last 1-7 days).
 - Tradeoffs: quality of recollection versus completeness for habitual measures
 - Need minimum of 3-6 24-hour recalls to get a good valid estimate of habitual dietary intake
 - Example: Sunday intake ranges from 7% higher to 72% higher than weekday caloric intake in Pelletier's Western Samoa sample
 - Habitual: Diet History versus food frequency
 - Burk's style based on 24-hour recall
 - Food frequency accuracy depends on appropriateness of food list
 - Example: HHQ modified for use in low income Southern black population by substituting chicken pot pie, Kool-Aid,
Dietary Intake

- **Prospective**
 - Self-recorded: diaries, records for 3-7 days. Need multiple records per subject.
 - Observed: weighed and measured, ethnographic observer
- **Problems with all intake data**
 - Food-tables
 - Sampling of subjects and time periods
 - Observer effect

Anthropometric Measurements

- Early warning of malnutrition; nutritional surveillance (quick, relatively cheap, useful for large samples)
 - Measure overall nutritional status through changes in body size and composition, not indicative of specific deficiencies. Since most malnutrition is caused by general undernutrition, this is not as big a problem as may seem
 - “Growth Monitoring” Examples

History and Physical Exam

- Good for populations, quick, cheap, easy to observe
 - Medical History: detect increased risk of malnutrition
 - Clinical observations
 - Eyes: Vit. A deficiency: dry, pus, spots, opaque cornea
 - Skin: sun exposed rash (niacin def.), hair follicle inflammation (vit. A)
 - Hair: lightening “flag”: protein deficiency
 - Mouth: corner cracks (riboflavin); soft spongy gums (vit. C)
 - Teeth: mottling: too much fluorine
 - Tongue: loss of papillae, raw, red (niacin)
 - Thyroid enlargement: iodine
 - Lower extremities edematous (thiamine; protein deficiency)
- Problems: Only a few symptoms are specific for malnutrition

Biochemical Measurements

- More specific than clinical symptoms, can be seen earlier in course of disease
- New tests coming on line all the time to measure functional results of various nutrient intakes
- Problems
 - Expensive, can be difficult to interpret
 - Specificity: Many diseases will alter biochemistry of body
 - Some nutrients are hard to find (most A is sequestered in the liver)

Archaeologists

- What did people eat, how did it affect them?
 - Diet history: recovery of refuse as an indication of potential food
 - Case study: Cassidy, Hardin Village and Indian Knoll, Kentucky
 - Description of subsistence:
 - Hardin Village: primarily corn, beans, squash cultivated supplemented with wild flora and fauna like deer, elk, turkey
 - Indian Knoll shell mound, primary food source is river mussels and snails with deer, turkey, fish, gathered plants (very few plant remains)
- Analysis of diet
 - Hardin village appears to have a higher intake of carbohydrates and lower of protein than Indian Knoll
 - Possibility of protein deficiency at Hardin Village
Archaeologists

- Clinical evaluation of remains
 - Paleopathologies that can be linked to diet
 - Rickets (curvature of femora, spine, parietals, pelvis) indicates vitamin D deficiency during growth and development
 - Osteomalacia (thin bones, demineralization) indicates vit D in adults
 - Harris lines may indicate vitamin C deficiency with growth stoppage or just about any other growth stopping condition
 - Porotic hyperostosis (thick frontals): response to anemia, increase RBC producing tissue. Can be iron deficiency or any other cause.
 - Enamel hypoplasia: growth disruption may be Vitamin A related

- Growth and anthropometry
 - Mayans show stature differences related to status inferred from burial goods
 - Taller folks are higher status
 - Biochemical tests
 - Bone strontium: higher strontium, more plants in diet, lower strontium more meat—good for within site differences
 - $^{13}C/^{14}C$ ratio: high ^{13}C relative to ^{14}C indicates a diet that is high in maize
 - Trace mineral analysis can tell about sufficiency of minerals in diet

Archaeologists

- Ecological measures
 - Population size and structure is related to nutritional status
 - Larger population or growth through time should indicate more food available
 - Decrease in infant and childhood mortality should be associated with better nutritional status

- Problems
 - Sampling
 - Preservation, recovery
 - Never know for sure you have everything

Anthropologist

- Investigate food within its cultural context
- Understanding household food use
 - Dietary Histories
 - Can modify individual techniques for use with household
 - Have food preparer give 24-hour recall or food frequency answers or keep records of foods consumed

Anthropologists

- Wilkins on how to evaluate household intake
 - Record the family larder and weigh all foods each day (or at beginning and end of period)
 - Grouped data for all family must be broken down to individual composition of household for nutritional assessment
 - Adult eating three meals a day = 1 adult unit
 - Child under 1 year = 0 adult units
 - Child 1 – 5 years = 0.25 adult units
 - Child 6 – 10 years = 0.5 adult units
 - Child over 10 = 1.0 adult units
 - Adult breakfast = 0.2 adult units
 - Adult midday or evening meal = 0.4 adult units
 - Take total household consumption of food per day and divide by the number of adult units

Anthropologists

- Other household consumption techniques are LESS precise than this
 - Record of purchased and produced food for several weeks is good in sedentary population with little food storage
 - Food list: recall of one week of household consumption by gatekeeper
Ecologist

• How are decisions made in population:
 – Energy Flow
 • Need kind and amount of food (usually by household)
 – Optimal foraging
 • Need kind and amount of food (usually by household)